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"Mediating technologies do not stand between the user and
the task. Rather, they stand with the user as resources used
in the regulation of behavior in such a way that the
propagation of representational state that implements the
computation can take place...These tools permit the people
using them to do the tasks that need to be done while doing
the kinds of things people are good at: recognizing patterns,
modeling simple dynamics of the world, and manipulating
objects in the environment."

Edwin Hutchins
Cognition in the Wild (pages 154-155)

I. PROBLEM AND SIGNIFICANCE
Mathematics is a domain in which cognitive

technologies traditionally mediate both learning and practice.
These cognitive technologies are often either physical or
symbolic artifacts, and computer-mediated cognitive
technologies offer new ways to combine the manipulablity
of physical artifacts with the computational power and
abstraction of symbols. Dynamic graphical representations
are one such resource for mathematics education that allow
students to access complex concepts in mathematics while
doing the types of mathematical activities they are already
good at. This paper examines the mathematical
conversations of middle school students while they use
computer-mediated graphic representations to construct a
shared understanding of the concepts of basic probability.
The analysis illustrates how mathematical learning and
problem solving is "stretched over" the complex cognitive
system of individuals, the physical environment, and social
interaction.

The study compares student conversations under two
conditions. In both conditions, students are given access to
a computer tool which they use to investigate the concepts
of mathematical probability. However, each condition
received slightly different versions of the computer software.
The first version employs graphical representations to
visually depict important abstract relationships that are an
important aspects of normative probabilistic reasoning. In
the second condition, this important graphic representation
is augmented with animation to determine what role
dynamic animation can play in helping students grasp
abstract relationships. The analysis of the students
protocols focuses on how the visual and dynamic elements
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of a computer based graphical representation influence
students' interpretations of the mathematical concepts.

The data suggests that the students with access to an
animated representation had qualitatively different
mathematical discussions than those who had the static
representation. The conversations of the animation group
used a narrative structure, perhaps suggested by the
animation, to organize their talk about the relationship of
two complex ideas of probability. The non-animation group
described the same relationship in a different and perhaps less
rich manner.

This paper will begin by discussion the theoretical
assumption that undergird both the design of the computer
learning environment and the analysis of the data. Second,
the paper will describe the two conditions of the study and
the methodology of the data collection and analysis. Next,
the results of the qualitative analysis of the student
transcripts will be reported. The paper ends with a
discussion of the findings and their instructional
implications.

II. THEORETICAL FRAMEWORK
The students involved in this study did not come tableau

rasa to the problem solving task. They brought to the
situation a collection of intuitions that they had derived from
their experiences with uncertainty. Much of this experience
comes from playing games. Games and game playing are an
essential part of childhood in our culture, and in many of the
games children play, the outcome of the game is based on
chanceon the outcome of random devices such as dice,
cards or spinners.

The collection of intuitions people develop from their
everyday experience with uncertainty and the way they use
these intuitions in reasoning in probabilistic situations are,
for the most part, "different in kind" then normative
mathematical reasoning. Mathematicians, when they reason
probabilistically, employ a tightly inter-connected mental
model that integrates all the relevant mathematical factors
into a coherent theory. By "mental model," I mean the
ability to generate predictions about the behavior of a
complex system by mentally simulating changes to the
system's representational state over time according to causal
relationships between the parts of the model (Johnson-Laird,
1983; Genter & Stevens, 1983; Roschelle, 1991; White,
1993). In probability some of these aspects are: an
understanding of random events; knowledge of all possible
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outcomes and how the outcomes are partitioned (i.e. the
event space); a causal understanding of the relationship
between the random events and the event space that would
lead to a predicted frequency of outcomes (i.e. a probability
distribution); and an understanding of the between sample
size and predictability (i.e. the law of large numbers).

However, research has documented that most adults are
not very good at probabilistic reasoning. The most
established explanation of this poor performance is that
adults use heuristic reasoning strategies in situations of
uncertainty and that this leads to systemic errors in their
conclusions (see Shaughnessy, 1992 for an overview of
research on probabilistic reasoning).

In our work with middle school students we have found
that students typically reason in a number of non-normative
ways as wellleading to probabilistic statements that are
mathematically unsound. In general, students reason from a
set of poorly connected qualitative cases(Vahey & Enyedy,
1996). A qualitative case is a group of observed regularities
that students apply to a limited set of situations on an ad
hoc basis (c.f. Rochelle, 1991). While Individual cases may
have some internal consistency, as a set they have no
coherence. Many of the qualitative cases students use over
the course of a single half hour interview are contradictory
(Vahey & Enyedy, 1996).

First, students often either do not realize that there is an
event space or they do realize that the event space is relevant
to their problem. Students often predict that any game based
on a random event or a series of random events is a fair
game. For instance one student stated, "Yeah, so they can
have the same probability to get whatever the heads and tails
is, so it is gonna be fair because its like halfits half the
chance you can get a tail or a head." Alternatively, some
students state that because a game is based on a random
event and thus inherently unpredictable. The reasoning
continues, that if one cannot make any predictions about the
outcome of the game, the game must be fair. For example,
a different student said, "The coins aren't that important
cause its just luck." She elaborated her answer in writing
stating, "The coins is just data and the data in this game is
not that important."

For the students that recognize that relevance of the
event space, the difficulty lies in enumerating and
partitioning the event space. Preliminary analysis of written
pre-test questions that asked 7th grade students to reason
about probability, showed that students' ability to enumerate
the entire event space of a game based on two events varied
with the exact context of the game (Enyedy and Vahey, in
preparation). The best performance was on a question that
asked the students to name all the possible outcomes of a
game based on two coin flips. In this situation about half
of the seventh graders were able to name all four possible
outcomes. Most of the students that did not name all four
outcomes did not differentiate the order in which events took
place and thus under counted the total number of outcomes
in the event space. For instance, Heads-Tails was often not
differentiated from Tails-Heads. It is only when the event
space is attended to and enumerated that it can the be
partitioned into favorable and unfavorable events and a
probabilistic judgment can be made.

Because reasoning from a coherent mental model is
different in kind from reasoning from qualitative cases,
innovative pedagogical solutions must be employed to
change students world view. Our pedagogical approach is
derived from our commitment to two theoretical
perspectives--constructivism and distributed cognition.

Constructivism
Constructivism is based on the premise that ultimately

students construct their own knowledge from their
interpretations of their experience. Further, it is assumed
that this process is more effective when students are actively
making sense of and organizing their experiences. Many
traditional pedagogues for teaching mathematics do not
provide students with rich experiences with mathematical
phenomena or support students in their sense making or
organizational efforts.

In response to the perceived lack of conceptual
understanding of mathematical concepts, the demonstrated
inability to perform complex problem solving, and the
difficulty in communicating mathematically, most major
organizations of professional mathematicians and many
mathematics educators have adopted a constructivist
philosophy and advocate more active and guided discovery
approach to learning including more communications-
intensive activities (Cf. NRC, 1989, 1990a, 1990b, 1990c
& 1991; and the National Council of Teachers of
Mathematics (NCTM), 1989, 1991 & 1995a). One such
recommendation published by the NCTM (Curriculum
Evaluation Standards for School Mathematics, 1989)
proposes that mathematics curricula should develop students
mathematical language abilities so that students are able to:

. reflect upon and clarify their
thinking about mathematical ideas and
relationships; formulate mathematical
definitions and express generalizations
discovered through investigations; express
mathematical ideas orally and in writing;
read written presentations of mathematics
with understanding; ask clarifying and
extending questions related to mathematics
they have read or heard about; (and)
appreciate the economy, power, and
elegance of mathematical notation and its
role in the development of mathematical
ideas."

These goals are a radical departure from earlier
conceptualizations of the mathematics teaching and learning
enterprise. They redefine both mathematical competence and
the pedagogy by which it is achieved. Mathematical
competence measured not by the ability of a student to
instantly recall mathematical procedures, but by a student's
ability to make use of and communicate her mathematical
understanding in complex problem solving. These goals
criticize the traditional pedagogy of mathematics classrooms
for portraying the teacher as a disseminator of information
and the students as intellectually and linguistically passive.
A new pedagogy is endorsed in which students actively
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engage in mathematics through sustained investigations of
mathematical concepts and where the teacher's role is to
create opportunities for learning and to guide students in
their construction of mathematical understanding.

We have adopted a pedagogy of learning through inquiry
an embedded it into the computer-meditated Probability
Inquiry Environment (PIE) we are designing. We have
adopted this approach because it provides a method of
learning mathematics that is based on making sense of one's
own experience through a cycle of conjecture, observation,
and analysis. This sense making activity requires that the
students organize their experience into conceptual structures
that can later serve as the foundation for traditional
computational skills. In the case of probability this means
we want the students to understand randomness, frequency,
and compound events prior to learning the procedures,
algorithms, and symbolic notation for computing the
theoretical probability of an arbitrary event.

Distributed Cognitionthe role of social interaction
The inquiry process is driven by encountering

problematic experiences (Dewy, 1938). Our second
theoretical assumption is that people try to resolve these
experiences through interaction with the environment and
with other people. We start from the position that through
interaction knowledge is socially constructed and thus
mediated though language (Lave, 1987, Vygotsky, 1986).
That is, we want our students to understand that certain
quantitative patterns exist in our world which
mathematicians have developed a precise way of describing.
The process by which students come to understand these
patterns and relationships is through social interaction.
Students produce and refine mathematical descriptions in an
iterative fashion by resolving ambiguous propositions and
negotiating any differences in interpretations. It is through
social interaction that they create an inter-subjective
understanding of the domain which is eventually
internalized.

Distributed cognitionthe role of external representations
In order for inquiry learning environments based on

these ideals to be successful, they require that we provide
students with tools and resources that will aid and guide
them in their construction of understanding and will
encourage that understanding to be closer to the normative
mathematical model of probabilistic reasoning. Our goal is
create graphic representations that support the social process
of inquiry and that maintain a high fidelity with the mental
model of probability used by mathematicians.

Graphical representations provide an accessible
perspective on mathematics which does not sacrifice
mathematical rigor or computational power. They arc more
accessible than other mathematical resources because of the
meaningful analogical mappings between the structure of the
representation and its referent (Barwise & Etchemendy,
1995; Myers, & Konolige, 1992). The structural
similarities between the graphic image and the source
domain can be used to visually highlight the salient features
of a concept. Additionally, in many instances graphic
images are less abstract than the symbolic notation that is
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usually used to teach students mathematics. Thus graphic
images can provide a more context dependent, experiential
way in which to investigate a mathematical concept. This
implies that the accessibility that graphic representations
provide may be due to the different set of cognitive resources
and background information that they draw upon (Stenning
& Inder, 1995)

The inferences that can be drawn from graphic
representations, however, are not merely helpful during the
learning process. Mathematical proofs have been presented
showing that the diagrams such as Euler's circles and Venn
diagrams are as complete and rigorous as the formal
symbolic notations (Hammer, 1995; Shin, 1991). Similar
arguments about the effectiveness and thoroughness of the
tree structure have been made in the domain of probability
(Shafer, 1995).

The point here is not that graphical images are a
universal representational system for cognition. Graphical
representations are not independent of language, rather
graphical representations are non-linguistic resources for
mathematical discourse and problem solving. Graphical
representations can be used as a public reference object that
can be talked about, gestured to, and manipulated in students
efforts to create a shared understanding. From this
perspective graphical representations serve as
"comprehensible input" and "output" that clarifies the
ambiguity of verbal discourse (Krashen, 1982) as students
communicate about a complex subject matter. The physical
presence of graphical representations make them ideal public
resource for communication and a convenient entry point for
private understanding.

Event trees
In our environment we have made an effort to link

together a number of representations at different levels of
abstraction to enable students to coordinate different
informative perspectives on the domain of probability. The
analysis presented here revolves around a graphical
representation called an Event Tree which represents of the
abstract event space (all possible outcomes and their inter-
relations) spatially by a vertical hierarchy of branching
nodes. Each branch represents an atomic event, while each
node (except for the terminal nodeshenceforth called
outcomes) represent decision points. The event tree is
identical to a probability tree except that the probabilities at
each node are not provided. The two types of tree structures
are shown in Figure 1.
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Figure 1. The Event Tree and the Probability Tree
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We incorporated a graphical representation of the event
space, the event tree, into our environment to help
accomplish the following instructional objectives:1

to highlight and make relevant the event space.
The structure of the tree, combined with the

1 It should be noted here that this analysis rests on the
assumption that all outcomes are equally likely. Although
this assumption holds for both games, it was not always the
case that the students held this assumption. Some students
believe that some of the outcomes were more likely than
other. For example, some students said that three heads
hardly ever comes up. Interestingly, the same pair also said
that fairness depended on both teams possessing the same
amount of outcomes. This global incoherence did not seem
to bother them even when it was pointed out to them.
While this warrants further study, it is beyond the scope of
the present paper.
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simulation of many trials, are used to demonstrate
the relationships and relevance of the chain of
random events leading to an outcome.

to enumerate the event space. The structure of the
event tree concretely shows all the possible events
and outcomes within the event space.

to partition the event space. The bottom row of
the event tree is labeled with the various outcomes
and how these outcomes are partitioned with respect
to the teams competing for points.

to afford computation of probabilities. The bottom
row of the event tree provides a centralized space to
compute probabilities using simple arithmetic and
quantitative comparisons.

II. METHODOLOGY
Thirteen pairs of students were divided into two

conditions and given the task of determining if a game of
chance was fair to all participants. The students were
recruited from the seventh and eighth grades of an urban
middle school. The study was relatively balanced in gender
(11 boys and 15 girls). Except for one pair, the students
chose their own partners and grouped themselves by sex.

The format of the study was an adaptation of an open
clinical interview. The students worked together in pairs at
a desk with a computer (pencil and paper were also available
but were not used by any of the students). An interviewer
was in the room seated behind the students and would
sometimes engage the students in discussion. For the most
part, these conversations were to clarify something the
students did not understand or to pursue a topic raised by the
students in their conversations. The majority of the
discussions, however, were between the two students.

The difference between the two conditions revolved
around the context and features of the event tree
representation. Five pairs of students were given a version
of PIE where the rules of the game were contextualized in a
story of a competition and the event tree was animated. The
remaining eight pairs of students were given a version of
PIE where the rules of the game were contextualized as a
coin game and the event tree was not animated (these
differences are discussed in greater detail below.) In most
other aspects the two versions of the computer software were
isomorphic.2

2 There were two minor differences between the two versions
of the software that did not seem to effect the students
conversations. First, in the animated condition the game was
based on a race to ten points at which time a team would win a
match. The non-animated condition did not have this secondary
scoring structure. This did not seem to affect the study because
students did not focus on this secondary scoring structure, but
instead looked the two team point totals (which both displays
supported in the same manner). The second difference was that
the two games had slightly different partitioning of the event
space. Again, this did not seem to affect this analysis because
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Description of the Probability Inquiry Environment
The games the students were asked to judge the fairness

of were games where two teams were competing for points.
Which team scored a point was determined by the outcome
of three coin flips. In both conditions, the rules of the
games were established so that one team won a point if any
one of five of the eight possible outcomes occurred and the
other team won a point if any of the reaming three outcomes
occurred.

PIE uses a context that is genuinely interesting to
middle school studentsgames of chanceto engage them
in doing mathematics (Enyedy and Vahey, 1996; Mannon,
1996). Games and game playing are an essential part of
childhood in our culture. In many of the games children
play, the outcome of the game is based on chanceon the
outcome of random devices such as dice, cards or spinners.

However, in adopting the rich activity structure of
games for mathematics, we wanted to attempt to avoid some
of the problems of selective attention and bias that can occur
in when students engage in game playing. For example,
when students play a game favorable experiences are
remembered more vividly and are more accessible then non-
favorable occurrences. As a result students miss-assign
probabilities for certain events based on their subjective
experience (Falk, 1989; Kahneman & Tversky, 1973;
Mannon, 1996). We also wanted to focus their attention on
the frequency of events over the course of a game and not
just on the end result of who won. For these reasons, we
chose to make the goal of the activity judging the fairness of
a game rather than playing the game. Judging the fairness
of the game is intended to frame the activity as an objective
investigation where the students are impartial judges.
Theories of cognitive development (Piaget and Ind ler, 1975),
as well as our pilot studies (Enyedy and Vahey, 1996;
Vahey, 1996), gave us reasons to expect that judging the
fairness of a game, while perhaps not as appealing as
playing the game, is still an interesting activity for middle
school students.

Shifting the activity from game playing to judging the
fairness of a game had the additional benefit of making the
activity structure ideally suited for facilitating mathematical
inquiry. PIE's version of inquiry is based on a cycle of
conjecture, observation, and analysis rather than the more
constrained paradigm of hypothesis testing taught in
scientific method. We decided to adopt an inquiry approach
to mathematics because it provides a method of learning
mathematics that is based on making sense of one's own
experience. This sense making activity requires that the
students organize their experience into conceptual structures
that can later serve as the foundation for traditional
computational skills. In the case of probability this means
we want the students to understand randomness, frequency,
and compound events prior to learning the procedures,
algorithms, and symbolic notation for computing the

the proportion between the two games remained constant at 5 to
3.
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theoretical probability of an arbitrary event. In addition,
during the process of learning specific mathematical
concepts via inquiry the students are also learning an array of
meta-skills, such as data-collection, data-analysis, modeling,
inference, deduction and presentation. These meta-skills
enable students to move beyond memorizing mathematical
facts and procedures and enable them to begin to participate
in the practice of mathematics.

The steps that are involved in the process of
systematically investigating a mathematical concept are
physically represented in the buttons along the top of the
computer screen (see Figure 2). These buttons, which are
always present on the screen, change the text, graphics and
tools to match the types of activities associated with the
steps in the "inquiry cycle". These steps are; understanding
the rules of the games, exploration of intuitions
(unfortunately this feature was not fully developed at the
time of this study), developing predictions and hypotheses,
collecting data and data analysis and finally drawing and
presenting conclusions (cf. White and Frederiksen, 1995).

Once the students were satisfied that they understood the
rules they were asked to answer some questions and make
predictions about the outcome of the game. The predictive
questions serve three functions; 1) to highlight salient
features of target conceptions, 2) to create a frame of
reference against which the data analysis will be performed,
and 3) to provide an opportunity to hear alternative
conceptions of one's peers and refine one's own thinking
through social interaction.

The students are asked three sets of predictive questions.
Each question relates to an aspect of probability that is
needed to mathematically judge whether or not the game is
fair. The first set of questions revolve around the main goal
of the activity: Is this a fair game? Why or why not? And
what do you mean by fair? The second set of questions ask
for the students to make specific predictions about the points
each team will have scored after ten turns and to provide a
rationale for their prediction. The third set of questions ask
whether or not any one event will happen more often than
any other.

After completing the predictive questions, the students
run a simulation of the competition. The simulation shows
each coin flip in turn and "grays out" the outcomes that are
no longer possible. When the three coin flips are completed
one outcome remains blue. A histogram, located directly
below the game board, automatically keeps track of who
scored the point. The histogram can me made to show
either the distribution by outcomes or by teams, and can
display the data from the current game or for all the games
played in the session. The students control the pace and
duration of the game. The students also control how many
games they play and at what point they wish to make their
conclusions. When they reached this point, they were asked
questions that followed up their predictions.

6 3/27/97, AERAChicago



Figure 2 Play mode of the animated condition
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The Differences Between Games
The game that the students were asked to play in the

animated condition was embedded in a story of a competition
between two groups of fishermen in a race to catch ten fish.
It is clearly a fictitious situation where the fishermen set up
gill-nets in the various branches of a system of branching
rivers and fishes are released one at a time to swim down the
river until they are caught by one team or another. The
students are told that the branch of the river the fish chooses
depends on the outcome of a coinheads the fish goes left
and tails the fish goes right (see Figure 2.) In this version
of PIE the event tree is contextualized as a river system
within a watershed (see Figure 2). The river system can be
directly mapped to a prototypical event tree for three coin
flips (Figure 3).

In the non-animated condition students were told that
teams were playing a game based on flipping three coins one
a t a time. The rules were: Team A gets a point whenever
both pennies land on Heads, or the nickel lands on Heads, or
all three coins land on Heads; otherwise Team. B gets the
point. The event tree, in this version of PIE, was a
prototypical event tree (see Figure 3).
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Framework for Data Analysis
All sessions were video taped, and those taped were

transcribed. The names used to identify students below are
all pseudonyms. Areas of the transcript in which the
students discussed the event space were transcribed in closer
detail and the relevant gestures were recorded and incorporated
into the transcript3. Additionally, all the students
interactions with the computer were captured and written out
to a file.

For this study, I examined the only excerpts with
respect to how the students talked about the tree and how
they used the tree to reason about the probability of events
and the fairness of the game. In the tradition of grounded
theory (Glaser & Struass, 1967) I used the data to produce
refine my initial conjectures and define new ones, eventually
settling upon coding students behavior according to the two
perspectives described below. I believed that the talk
between students would reflect any contrasts in
understanding of the event tree. The framework I chose uses
students talk and gestures to code the perspective they are
adopting for that conversational turn. Coding was based on
contrast classes in the verbs the students' used when talking
about the event tree. These codes do not make any strong
commitments as to the knowledge that students do or do not
possess at the time of the conversational turn. Instead they
reference what the students are attending to at the moment.

This paper argues that students talked, gestured,
manipulated and interacted with the event tree in two distinct
and complementary ways. It is likely that these two sets of
behaviors correlate with a local perspectives that focus a
students' attention on certain aspects of the tree and away
from others.

The first perspective, the "outcome perspective," is
characterized by attending to the outcomes of the event space
that are represented along the bottom row of the probability
tree. The second perspective, the "process perspective," is
characterized by attending to the structure of the event tree
(especially the internal nodes) that represents the process by
which outcomes occur.

Both perspectives fulfill different functions in the
problem solving process. The outcome perspective allows
students to quantitatively compare the partitioned event

3 The transcripts are arranged in three columns the first
identifies the speaker, the second is the discourse and the third
column is used for the gestures that were coded for that turn.

Boldface was used to indicated possessive verbs coded as the
outcome perspective and underlining was used to indicate the
action verbs coded as the process perspective.

The transcript conventions 1 used are derived from Gumprez
(1982) and are as follows:

[)= comments by researcher
0= best guess at what was said
-- =false start
... =pause
wor:::d= lengthening the word
== = latching and overlaps
wordl= where a gesture begins
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space and use this proportion to judge the fairness of the
game. However, this comparison rests on the assumption
that all outcomes of the event space are equally likely. To
understand why this is the case, students need a way to
understand the process by which a series of coin flips
produces an outcome. The process view allows students to
understand the relationship between the event space and the
expected probability distribution.

IV. RESULTS

Example of the Outcome Perspective
The example below illustrates a typical stretch of

student dialogue that I have coded as reasoning using the
outcome perspective. It was prototypical of this type of talk
in that it demonstrates both the use of possessive verbs used
and horizontal gesturing that are focused on the bottom row
of the event tree. In this episode Lilly spontaneously
interrupts me while I am explaining the computer interface
and states that the game is unfair. At first she is unable to
verbally articulate her point. However, using the image as a
resource for communications she reveals by gesturing that
she is attending to the bottom row of the treefirst as she
counts the outcomes and second as she points to a group of
outcomes. She eventually changes tack and instead of trying
to articulate why the game is unfair, she re-partitions the
event space to make it a fair game. This shifting of the task
from explaining their reasoning to fixing the game turns out
to be a common strategy. After re-partitioning the event
space she returns to explain why the games are unfair, by
counting up the outcomes for each team and comparing the
two quantities.

It is interesting that in this example the gestures are
used in two different ways. In the first turn Lilly uses her
gestures as a resource in the communicative process. Her
verbal utterances, with five false starts, would be difficult or
impossible to interpret without the accompanying gestures
that clarify ambiguities of her speech. References to the
event tree in this case give Lilly a public resource to aid her
in conveying meaning where her mathematical register
seems to fail her. In her second turn, however, Lilly uses
her gestures as a resource for her cognitive activity. She
counts up the number of outcomes for each team using her
finger to point to each outcome in turn. This use of
pointing changes the cognitive activity involved from
counting small objects in her visual field to the easier
activity of counting the number of time she moves her hand
(Kirsh, 1996).

Excerpt I.
Lilly It is a little unfair that

team A won't get B1-- and
then team B won the--(it
should be)2 --is it--so that-
you should put team B3 over
here and team A4 over here

Int So you think its because the.
. .nets are==
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Lilly ==uh huh more like team B is
more than team A. It looks
like its (1,2,3,. . 1,2,. .

1,2,3)5 they got five. Its
unfair don't you think so?

Gestures
1: quick "counting points" along the

bottom row
2: points to the bottom row of the tree
3: flat hand held vertically sweeps

from them middle of the tree left
4: hand sweeps from the middle of the

tree to the right
5: counting off while pointing to spots

along the bottom row of the tree

)examples of the Process Perspective
Students also successfully reason from the event tree

using the process perspective. In the example below, Dee
makes inferences about the fairness of the game based on the
internal nodes of the tree's relationship to the outcomes.
Dee noticed that certain nodes, once passed, pre-determine
the outcome of the game. In effect Dee is inventing Alpha-
Beta pruning to constrain the event space which must be
considered to determine the fairness of the game. This type
of reasoning is coded as the process perspective because Dee
is focused on the internal nodes of the tree and reasoning
about the process which leads to outcome rather than
quantifying the outcomes.

Excerpt 2.
Dee ...and I think B has a better

chance...here lthere's a 50-
50, at both of these places2
there's 50-50 chances. but
here and here3, they always
end uo at B, so there's no 50-
50 chance, I mean, there is up

here4, but no matter where
they ao they always end uo at
a. here they can co either
ways, that's even, and then
this one goes with Team A6

Gestures
1: points to the top

the event tree
2: points to both

first level of
3: points to both

first level of
4: points to the left intersection of

the second level of the event tree
5: points to the intersection second

from the left of the second level of
the event tree

intersection of

intersections on the
the event tree
intersections on the
the event tree
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6: points to the intersection third
from the left of the second level of
the event tree

An additional example of Alpha-Beta pruning to limit
the event space.

Excerpt 3.
Int so um do you think that any

river happened more then any
other river

Peggy yep
Lilly yeah', over here see it looks

like they got more chance to
ao to here2- then to down to
team B's nets that all. The
fish co down to river like
they only have one chance to
co to team A but they have
more chances to go tal team B

Gestures
1: trace the left path down the tree
2: points to the left outcome along the

bottom row
3: points to spots along the bottom row

of the tree

In both examples students' talk make explicit use of the
event tree as a public resource as they refer to its internal
structure. The majority of Dee's references are marked
verbally with the word "here" and gesturally with a point to
a particular node of the tree. Dee's utterances if presented
without her gestures would be ambiguous but coherent. The
meaning of Lilly's speech seems to be more dependent on
the gestures that refer to parts of the event tree.

More interestingly, Lilly does not identify specific
nodes that are strategic to the outcome of the game. Rather,
she first prunes of the entire right hand side of the tree
structure with her calling attention to the left side of the tree
with the words, "over here," and her vertical gesture.
Presumably she has noticed the perfectly balanced symmetry
of the right half of the event tree and moved on to analyze a
more consequential feature of the event space. With this
move accomplished, Lilly then compares the partitioning of
the smaller event space and finds that there is only one
opportunity for team A and three for team B, adding more
evidence to her earlier assertion that the game was unfair.

As mentioned earlier, to produce quantities for the
relative frequencies of outcomes students need to draw upon
their understanding of the process of events and the causal
relationships in the event structure. In the example below,
the students use the process perspective to reason about the
event space and conclude that certain events are slightly
more likely than others. The discussion demonstrates the
use of active verbs and vertical traces to talk about the causal
events that lead to outcomes.

Noel Enyedy Page 8
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Excerpt 4.
Int But do you think one path is--do

you think the fish is gonna go
down one path more likely than
the others?

Tom I don't know
Paul starts typing short answer
Paul How much is in there'? probably

one sixteenth I guess 1:

points to a prediction bar that
is pulled most of the way down

Int what . . . one 16th of what?
Paul Like if they have ten fish

right? If I ao in each box'
they got eight right, and I got
two, two fish left. They
probably will ao2 in each side

Int
Paul
Int

Paul

OK
`cause its outside
Do you agree with that?[to Tom]
That it would go to the
outside?
Right. . .it maybe that it goes
in each box here, but two fish
left it will go to the outside
or inside

Gestures
1: traces vertical paths down the event

tree
2: Traces paths down each of the

outside paths of the event tree

Examples of the Combination of Both Perspectives
Students demonstrated the ability to fluidly switch

between the perspective to leverage both the outcome and
process views for problem solving. Cases where the two
students collaborate to coordinate these two perspectives led
to successful problem solving. In the example below, Ming
and Xu attend to different features of the environment, Ming
takes the process perspective and Xu takes the outcome
perspective. The discussion shows the students negotiating
what are the salient aspects of the event space. Ming
initially believes that because team A has the center paths
that they will win the game. His partner however is focused
on the bottom row and uses the outcome approach to argue
for ignoring the spatial location and only focusing on the
cardinality of the partitioned event space.

Excerpt 5.
Ming I think

team
routes

Xu
Ming

9

its not fair you now
B kind of has
in the middle'

And it usually ends in the
middle. It doesn't it?

shakes head
how?. . .I don't know
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Xu OR 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 .

1, 2, 3, 4 . .five for team B
and team A is three out
of eight

Ming what?
Xu its three out of eight.

. look team B gets five of
them that's just not
fair

Ming yes its not fair

Gestures
1: traces a path down the middle of the

tree

It is important to notice that in cases where one student
coordinates both the outcome and process perspectives the
student's gestures and talk are also coordinated. For
example, in both Vicki's second and last turns of the excerpt
below, when she talks about the process by which the event
space is related to the expected probability distribution, she
coordinates her gestures that highlight the internal nodes of
the event tree (e.g. vertical traces) with verbs that describe
the relationship in terms of spatial relationships and motion
(e.g. "go down there" or "you flip a tail and you go here").
Likewise, when she compares the proportional quantities of
outcomes she uses gestures that refer to the bottom row of
the tree (e.g. horizontal counting) and verbs that describe
teams as possessing outcomes (e.g. "they have only three").

Excerpt 6.
Int

Vicki

Int

so now if you want to answer
the questions
all right the game is not fair

==why isn't it fair?
Vicki becausel if you try all the

probabilities co down there is
like eight of them and like
they only have three2 and
it toes to team A and3 five
to team B so its gonna be
unfair to team A though
but when its red here its my
turn and when its red over her
its her turn right?
Oh no,==
==no you keep going till you
flip
no there is nobody actually
playing. Its the fisher men
yeah so look ygui flip the
coin heads or tails or you co
here or over here and then You

flip a tail and You ao herea.
So there are all6 (the

Juan

Int

Vicki

Int

Vicki
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nets of) the teams so its
going to be unfair.

Gestures
1: traces paths down the tree
2: points to the bottom row of the tree
3: points to the bottom row of the tree
4: point to the first intersection at

the top of the tree
5: traces a path down the tree
6: horizontally traces the bottom row

of the tree

An Extended Example
The above excerpts demonstrate what student discourse

looks like when students are problem solving from the
outcome perspective, the process perspective or both.
However, the examples above sacrifice the context of the
interaction to clearly illustrate my conceptual framework.
The extended example below shows how two students reason
about the Fish Game using the event tree representation over
the course of the activity which lasted approximately thirty
minutes. What is important about this extend example is
that it highlights the social aspects of this task and the on-
going negotiations that the students perform to construct a
shared understanding of the game and of what aspects of the
situation are salient.

The example begins with both students spontaneously
talking about their interpretations of the game prior to
watching a demonstration or answering any of the predictive
questions. Both Vicki and Juan begin with non-normative
views of the event space's relevance. Juan thinks that the
turn taking aspects of games is the key feature that makes a
game fair and keeps participants from fighting. Vicki has a
more common naive conception. She believes that the
partitioning of the event space is irrelevant because the game
is based on coin flipping, and coin flipping is a "fifty-fifty"
event.

Excerpt 7
Vicki Yeah, so they can have the

same probability to get what
ever the heads and tails is.
So it is gonna be fair.
`Cause its like half. . . its
half the chance you can get a
tail or a head.

Int is that what you think it
is?[to Juan]

Juan so then it won't (get in a
fight)1. it would have to be
fair

Int so now that's for the whole
game its fair. .cause you
said [to Vicki] that onefor
one flips its fair

Vicki yeah one flip is fair. . . but
how bout this when you have
two team B's right here2
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because you set up the team
like this how come you have
two team B's rivers instead of
team A Int right so the
each get there are 8 spots==

Vicki = =oh ==

Int ==where the fish can end up
and they each get a number of
the spots so they each get to
set up there nets so that they
catch the fish that comes down
one river or another

Vicki hmhum. . . .( long pause) OK
the next one what made you
think the game was fair or
unfair how do you answer
that?

Juan because we explained it
Int so you said above that it was

a fair game and that fair
means that each team has the
same probability ? or each
flip has t h e same
probability?

Vicki each flip
Int you can . . . So its fair?

Why did you say the game is
fair? You can Just==

Juan ==cause they each3 get4 there
own3 turn4

Gestures
1: wave hands back and forth keeping

them a constant distance from each
other

2: [gesture not clear]
3: both hands pointing diagonally up

and out.
4: Alternates raising and lowering

hands

*NOTE the left hand is obscured by Juan'
body

By the time I prompt them to begin to record their
reasoning, Vicki has re-evaluated the relevance of the
partitioned event space. However. Juan is still struggling
with understanding the game itself, and so Vicki attempts to
point out the relevant features of the task. In her explanation
she uses both the process perspective and the outcome
perspective.

Excerpt 8

Int so now if you want to answer
the questions

Vicki all right the game is not fair

Int ==why isn't it fair?
Vicki because' if you try all the

probabilities go down there is
like eight of them and like
they only have three2 and it
goes to team A and3 five to
team B so its gonna be unfair
to team A though

Juan but when its red here its my
turn and when its red over her
its her turn right?

Int Oh no,==
Vicki ==no you keep going till you

flip
Int no there is nobody actually

playing. Its the fisher men
Vicki yeah so look you4 flip the

coin heads or tails or you go
here or over here and then you
flip a tail and you go here5.
So there are all6 (the nets
of) the teams so its going to
be unfair.

= =

Gestures
1: traces paths down the tree
2: points to the bottom row of the tree
3: points to the bottom row of the tree
4: point to the first intersection at

the top of the tree
5: traces a path down the tree
6: horizontally traces the bottom row

of the tree

In predictive question two, the two students continue to
debate over what is salient about the game as they attempt
to make quantitative predictions about the outcome of a
number of turns. Vicki believes that Team B will catch
more fish because of the asymmetry in the event space.
Juan, however, does not agree that this will make a
difference. Juan, who at this point is controlling the mouse,
pulls the prediction bars to show that Team A will catch
more fish, perhaps because of the central location of team
A's nets. Vicki does not agree, and Juan in the last turn of

the excerpt changes the bar to reflect her opinion.

Excetpt 9
Int Ok so they are going to

release ten fish one at a time
and swim down. Do you think
one team is going to catch
more fish than the other?
There will only be ten fish to
catch.
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Juan one team is gonna catch more
than the other

Int and which team? this team a --
the red bar and team B. You
can just slide this bar up and
down and how many==

Juan ==team' a
Vicki ==team B team B
Juan No team A
Vicki team B
Juan A
Vicki B, B
Juan thetelVicki No:::o team B
Juan Why? just because they got

two2 doesn't mean==
Vicki ==no I mean you only have

three that go to team A though
but we have five ways to team
B, so (if you get the chance)

Juan Ok
Vicki Yeah yeah yeah3

Gestures
1: pulls bar to show that Team A score

more points
2: [refers to two grouping of nets]
3: [Juan is pulling bar to show that B

will win 7 of the ten]

However, even though Juan has agreed to use Vicki's
answer for the formal prediction that the computer records,
he is not convinced. There are at least two reasons why
Juan may have entered Vicki's answer instead of his own.
First, it could be a social move to avoid further argument
and to allow them to continue to make progress on the
activity. However, it is also possible that Juan agreed to
input her answer because her explanation was more complete
and articulate than his own. Vicki had presented evidence
from the outcome perspective that gave specific quantities of
outcomes to each team. Juan's rationale, stated in the
example below, casts doubt on a key aspect of Vicki's
argument but does not present any positive argument or
causal reason why team A would score more.

Excerpt 10
Int

Vicki

Juan
Int

Juan

Int

Juan

OK so do you guys both agree
with that?
Yeah
Nope
you don't agree?
Team A , I don't know what
they mean
just tell me what you think
I think just because team
has morel ways to get it

that doesn't mean team A2 cant
get more than team B3

b
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Int so do you
going to
or more

Juan probably
more

Gestures
1: traces the bottom row of the tree

with his pinkie and index finger
extended

think that team A is
get the same amount

the same amount or

2: points to the left
3: points to the right

In the third predictive question, which asks about the
relative frequency of the outcomes, Vicki manipulates the
histogram to show a normal distribution. She pulls the bars
to show that the frequency of the outcomes in the center will
be higher than those on the outside. Juan then takes the
mouse and creates a random pattern with the bars of the
histogram. When I ask them for their rationale Juan states
that because the events are random you will not be able to
tell what the outcomes will be. Vicki, however, believes
that you will be able to make some predictions about the
frequency of outcomes, reasoning that three heads is an
unlikely outcome and so the corresponding part of the
histogram will be low. In some senses both students are
correct. Juan is right in that you cannot accurately predict at
any given time what the outcome will be. What he ignores
is that over a large number of trials you are able to predict
relative frequencies based on the structure of the event space.
Vicki is right when she notices that three heads is an
unlikely outcome. In fact, it will only happen about one
eighth of the time. However, she does not yet realize that
any particular event is equally unlikely.

Excerpt 11
Int

Juan

Vicki

Int

Vicki

and why did you choose this
pattern Juan?
cause you never know where
they are gonna go so its you
are not gonna be sure
But I think there is more a
chance that your gonna go down
the middle
why do you think it is more in
the middle?
because if you separate these
two' right, if you go to the
head then they are going to be
separate too then you wont
likely go to a head again.
You you are going to go to
the tail or something like
that. So it wont be on the
outside so if you give them
less. . . .so the middle part
is gonna be higher

Gestures
1: spreads index and middle fingers

apart at the first intersection
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After the predictive questions, the students run the
simulation. When they are finished I ask them whether or
not they still disagree about the game. They do not. The
empirical evidence in this case was not enough by itself to
convince Juan that the game was unfair.

Excerpt 12
Int OK but you both disagree still

on whether it is fair or not,
still

Juan Fair cause, we don't know
which the fish is going to go.
So its not gonna be our fault.
Or the fisherman's fault. The
fish is gonna decide which way
he is gonna go.

Int so the fish is gonna act
pretty randomly? cause we're
flipping a coin, and you don't
agree with that[to Vicki), why
don't you

Vicki Because you know how many ways
its gonna be the--end up. The
fish like they have eight ways
right? and you always have the
two teams. They are not gonna
be 4 & 4, if it is 5 & 3 so
its not an even number so if
you go to 4&4 it'll be (fai)r.

However, Juan finally adopts Vicki's rationale when I
change the task. I switch from asking why the game is fair
or unfair to asking them to fix the game. In re-partitioning
the event space Juan seems to coordinate both perspectives.
First he focuses on the quantitative structure and assigns an
equal amount of outcomes to each team. But at the end of
the conversational turn he seems to check his reasoning
using gestures associated with the process perspective.

Int so since you both said it
wasn't a fair game, or well
you [to Juan) were more
undecided, how can you make it
a fair game?

Vicki like you separate evenly
Int what do you mean?
Vicki like if youl end up eight ways

you separate them like those2
two team A

Juan it would be even if put two3
team B's and two team A's 4 or
just ones team B and one team
A6 with the same amount?
of

Int rivers?
Juan ==yeah==
Vicki ==Yeah==
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Gestures
1: points to left halve of screen
2: rotates hand
3: with fingers in a "V" points to the

left of the bottom row
4: with fingers in a "V" points to the

right of the bottom row
5: with index finger extended points to

the left-side of the bottom row
6: with index finger extended Juan

points to the right-hand side of
the bottom row

7: with finger in a "V" he traces up
and down the middle of the tree

Quantitative results
There were no significant quantitative difference between

frequency of the outcome and process perspectives in the two
conditions. In the animated condition 22 propositions about
the event space were coded as outcome and 8 propositions
were coded as process. In the non-animated condition 21
propositions were coded as outcome and 3 propositions
about the event space were coded as process (Pearnson Chi-
Square= 1.65, DF=1, p= 0.199).

There were no qualititive differences between the
propositions coded outcome perspective in the two
conditions. However, there were qualitative differences
between the two conditions in the propositions that were
coded as the process perspective. In the animated condition,
the students statements about the process by which the
probability distribution came to be were organized around
the metaphor of motion which was directly mapped onto the
event tree (see Excerpts 2,3,4 & 6).

In the non-animated condition the students did not use
the metaphor of motion across space to discuss the process
by which a probability distribution might occur. Instead, as
seen in the examples below, they talked about the process in
terms of some patterns of coin flips being more
representative of what would happen because they were more
random. This metaphor has a low fidelity with the event tree
because it there is no close mapping between the "patterns"
and the spatial representation of the event space. As a
result, none of the students in the non-animated condition
talked about any causal mechanism that could be used to
determine the expected distribution of coin flips across all
possible outcomes.

Excerpt 13.
Debby um::m, I ch-chose those--I

guess cause it's like too much
of a pattern...um..like Tails
tails tail uh==

Jill tails tails1==
Debby yeah, seems like less of a

chacne for it to coo on that
same one all three times,and
um like tails heads tails,

13
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like, in a pattern like that,
and like heads tails heads

INT uh, huh
Debby some of them seem like less of

a chance, and also I think
this one right here2. It's
like all three like um it's
all three in a row, all the
times its gonna land on the
same one

Gestures
1: points to a non-specific spot on the

tree
2: use the mouse to circle the left-most

path of the tree (Heads-heads-
heads)

In the example below, taken from the non-animated
condition, when the students try to reason about the expected
probability distribution they use the metaphor of taking
possession of an object to organize their explanation.
Again, this metaphor does not have a high fidelity with the
spatial representation of the event tree.

Excerpt 14,
Jen Um I don't think this game is

fair, because....its like-
there is like no way that team
b to get their own--it's like
an advantage f or team a
because all you have to do is
lust get 2 heads or 1 head
with the nickel..and then um

Liz and its easy to just get two
heads
I know..its easy to lust get
head for um for the nickle..so
I don't think it is fair.

V. DISCUSSION
The transcripts suggest that both versions of the event

tree were successful in the limited instructional objectives
laid out at the beginning of this paper. However, the short
activity of this study was not enough to provide students
with a lasting, coherent concept of probability. While all
the student pairs interviewed concluded that the game was
unfair (the mathematically correct conclusion) and
successfully incorporated references to the partitioned event
space in their explanation, preliminary analysis suggests
there were no significant gain scores on the pre/post-test.

I claim, however, that the transcripts show that the
students had two distinct ways of talking about and referring
to the trees, which I have labeled the outcome perspective
and the process perspective. The pairs of students, taken as
a cognitive system, demonstrate the ability to
collaboratively coordinate these two perspectives and
successfully reason about the game. Further, the presence of
animation facilitated talking about the event tree in a
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different manner. I will now discuss the origins of both
perspectives, their complimentary functions in the process
of learning and reasoning and provide an account for why the
qualitative difference occurred between the two conditions.

It is important to clarify that I am not making strong
claims in this section about students conceptual
understanding of the game and of probability. The reader
should not conclude that because a student has focused on
the outcomes, and used that perspective to successfully
reason about the game's fairness that she does not understand
the process that produced the outcomes, especially in light
of the fluency in which some students switched between the
perspectives in their discussions. What I am arguing is that
the students' discourse reveals what they are attending to at
the moment and that what they are attending to may
correlate with some local conceptual structure that
emphasizes some aspects of the problem and de-emphasize
others.

For the students of this study, evidence suggests that
the coordination of the process and outcome perspectives via
references to the event tree contributed to successful problem
solving and learning. The event tree served as a public
resource for communication in two ways. First, in both
conditions the event tree helps students when they get into
linguistic trouble with the mathematical register of
probability. At points in the activity where the students
seemed to be struggling for the appropriate word or phrase
to express their ideas students made gestures that referenced
the event tree and helped clarify the ambiguity of their verbal
speech. Second, the event tree provided the students with a
way to visualize and talk about the abstract event space.
However, the students' interpretations of the animated event
tree differed in that the students were better able to connect
and coordinate aspects of the event space's quantitative and
narrative structure and come closer to a causal model of
probability.

Quantitative Structure
It is my hypothesis that the outcome view of the event

tree is in part facilitated by the visual structure of the
representation. Static images often are used successfully to
convey conceptual information. They are easily interpreted
as objects or concepts, but are usually not interpreted as
actions or processes (Trversky, 1995). In particular, the
hierarchical structure of the tree is often associated with
taxonomies of objects (Kress & van Leeuwen, 1996) where
the lower leaves are subordinate and more specific exemplars
of the category of objects represented in the leaves above
them. The absence of labels for the internal nodes further
focuses attention on the bottom row of the trees and as
result focus students attention on the outcomes of the event
space.

Given the nature of the task (a quantitative comparison
of expected point totals of the two teams) there is a strong
functional reason for the dominance of the outcome view in
the student conversations. The bottom row of the event tree
reveals the quantitative structure of the event space. The
terminal leaves highlight the cardinality of the outcomes and
how they are partitioned. The event tree, viewed from the
outcome perspective, is an efficient external representation
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for quantitative reasoning. First, it frees up the cognitive
resources that a student would need to produce, organize and
partition the event space. Second, it avoids some of the
limitations of short term memory by providing an external
record of all the possible outcomes of the event space.
Students who are reasoning from the outcome perspective
can count off different combinations of outcomes to produce
quantitative proportions. Student can then use these
proportional quantities to reason about the situation and
solve problems by comparing quantities and leveraging their
skills in arithmetic and algebra.

The outcome perspective, which highlights some
aspects of the quantitative structure of the event space, is a
natural point from which to build towards mathematical
symbolic notation. The outcome perspective provides an
experiential base for proportional quantities, fractions and
percents in a manner that highlights their relevance in
reasoning. This experience and focus on quantities in the
abstract leads students to begin to leverage arithmetic and
algebra to reason probabilistically, setting the stage for the
introduction of powerful and elegant abstract symbolic
notation that when understood make computation more
efficient. Computation and quantitative comparisons are
essential components of probabilistic reasoning. The
manner in which the outcome perspective emphasizes these
aspects of probability make it an essential piece of a
student's conceptual repertoire and a perspective that must be
facilitated by the structural features of our learning
environment.

Narrative Structure
It may be that other aspects of the visual structure of

the event tree in our environment encourage students to
adopt a model driven process perspective. Semiotic analysis
of visual images postulates that images can be interpreted as
a narrative or process if the image has an actor, a goal and a
vector that connects the actor to the goal (Kress & van
Leeuwen, 1996). The contextualized animated event tree
meets these conditions. The fish of the animated condition
is the actor, the bottom row of the rivers is the fish's goal,
and the image of the river system provides a clear vector that
connects the actor to its goal. As a result, the visual
grammar of the event tree supports a process interpretation
that narrates the events over time and space.

The process view contributes a different way to think
about the game, fairness and probability. The process view
highlights the narrative structure of the event space,
leveraging both the structure of narrative and our spatial
reasoning abilities to reason about probability. It brings to
the forefront the active agent which is part of a system of
activity and facilitates causal interpretations of the agent's
activity over time and space. The perspective is inherently
contextualized and provides a way of engaging the problem
in a subjective manner that is situationally specific.

Further, it is likely that in more complex probabilistic
setting the process perspective will become more important
to computation. In cases where all events are not equally
likely, one must begin to assign weights to the various
branches of the event tree. In these cases, computation
involves more than quantitative comparisons of the
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proportion of outcomes, it must account for the unequal
probability of each atomic event in the compound event. In
these types of situations the probability of each atomic
event within the compound event is multiplied to produce
the probability of a given outcome, making the relationship
between the structure of event space and computation more
salient.

The process perspective may contribute to students'
understanding of the event space in at least three ways.

First (but not tested in this study), the process view is
generative. Understanding the process that the tree
represents in terms of nodes and branches, creates a structural
framework which students can use to generate an event space
for new situations. For example, once a student understands
that the nodes represent events and that the branches
represent outcomes for that event and can translate the events
of a game into this framework, she can use that
understanding to create an event tree for this new context.
With the creation of the tree the student has enumerated the
entire event space, and has positioned herself in a place to
use the outcome perspective and the quantitative structure to
solve specific problems. Creating the event tree requires
information not highlighted by the outcome approach. It
requires attending to the narrative structure of the events and
representing them graphically. Further research needs to test
the validity of this hypothesis.

Second, the process perspective allows students to
personify probability. The narrative structure provides
students with a means to immerse themselves in the
process, identifying with an agent within the story. By
adopting the viewpoint of an agent with a goal, or with
someone who benefits by that agent's actions, students can
reason about the process drawling upon situational
knowledge of similar contexts. That is they can create a
mental simulation of the process and "run" that simulation
attending to and reasoning about the intermediate events.
Subjective reasoning from the viewpoint of an agent within
a process has been shown to be a productive strategy in
scientific practice (Ochs, in Press). In the animated
condition it may be that reasoning from "inside" the
narrative allows students to recognize the salient aspects of
the problem and begin to discover patterns that contribute to
a better understanding of the quantitative structure of the
event space. That is it may be that it is through the process
perspective that the outcome perspective is discovered to be
relevant. It is a telling sign that the subjective perspective
was only adopted in the animated condition.

Third, Hall has proposed that certain representations
allows student to consider both the situation and quantity
simultaneously providing redundant constraints on the
problem space (1990). It may be that the event tree provides
a means for students to coordinate the situational structure of
the event space (process view) with the quantitative structure
of the event space (outcome view). The combined
information constrains the students' model of the situation
to a model where what is explicit in the quantitative
structure and what is explicit in the narrative structure are
both true. Students can thus check and evaluate their
inferences against the union of both sets of constraints,
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giving them a much smaller problem space to explore. In
more difficult probability tasks, with events that had unequal
probabilities at each branch, the two views would have to be
coordinated for the student to perform quantitative
computations. In these situations the computing the
probability of an outcome requires multiplying the
probability of each of the individual events that lead to an
outcome. This in turn requires an understanding of the
internal structure of the event tree.

One of the arguments of this paper is that the process
perspective that the students adopt when talking about and
reasoning with the event tree is not a primitive strategy.
Nor is it merely the structural origins of the outcome
perspective, useful in learning the more abstract outcome
approach and then abandoned when that perspective is
mastered. I propose that the two perspectives provide
complimentary functions that are entwined together in the
actual problem solving of students. However, the non-
animated version of PIE strips away the context of the
Fishermen's competition, replacing it with the weaker
narrative structure of a game of tossing three coins. In
addition, when the fishermen context was removed so was
the agent of the narrativethe fish. With the loss of the
fish as an animated agent that highlighted the intermediate
events on the event tree, one of the critical three elements
that facilitates a narrative interpretation was lost (although
the "graying-out" of branches of the tree still highlighted the
internal structure of the event tree). Thus salient features of
the narrative structure that supports the process perspective
were suppressed and the resulting understanding of
probability was less developed. Students, in this new
environment did attend to intermediate events, did not
consider adopting a subjective viewpoint, and took longer to
notice relevant aspects of the quantitative structure.

We had unintentionally4 created an environment where
the abstract quantitative structure and partitioning of the
event space remained exactly the same, but the situational
and narrative context that highlights the process was absent.
It appears that features of the environment, such as an
animated agent, might be needed to highlight the narrative
structure and provide a causal model to organize ones
understanding between the partitioning of the event space
and the probability distribution

VI. CONCLUSION
In this paper I have examined the role that graphical

representations can play in mathematics education. I have
shown that graphic representations provide a valuable
resource for mathematical discussions with no loss of
mathematical power for some of the problem solving tasks
within probability. In inquiry based learning environments,
such as PIE, these discussions are critical to the

4 I say unintentionally because this was not a controlled
experiment. Rather the differences in PIE were the result of our
iterative design cycle where each new version is user tested. The
non-animated version of the environment was a letter version of
the software in which some additional features were added or
changed. Some of these changes appear to have been mistakes.

Noel Enyedy

development of students' construction of a shared
understanding of the domain.
The PIE environment demonstrates one way in which
graphical representations can be leveraged to achieve
instructional objectives. Further, the analysis of the
students talk revealed how features of the environment, such
as rich contexts and animation, can facilitate important ways
of interpreting the representations and ultimately the
mathematical concepts. This analysis has important
implications for designers of instructional activities, but
also touches on issues that may be important to the more
general audience of those engaged in the design of systems
where interaction and interpretation play critical roles.
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